HP1 proteins form distinct complexes and mediate heterochromatic gene silencing by nonoverlapping mechanisms.

نویسندگان

  • Mohammad R Motamedi
  • Eun-Jin Erica Hong
  • Xue Li
  • Scott Gerber
  • Carilee Denison
  • Steven Gygi
  • Danesh Moazed
چکیده

HP1 proteins are a highly conserved family of eukaryotic proteins that bind to methylated histone H3 lysine 9 (H3K9) and are required for heterochromatic gene silencing. In fission yeast, two HP1 homologs, Swi6 and Chp2, function in heterochromatic gene silencing, but their relative contribution to silencing remains unknown. Here we show that Swi6 and Chp2 exist in nonoverlapping complexes and make distinct contributions to silencing. Chp2 associates with the SHREC histone deacetylase complex (SHREC2), is required for histone H3 lysine 14 (H3K14) deacetylation, and mediates transcriptional repression by limiting RNA polymerase II access to heterochromatin. In contrast, Swi6 associates with a different set of nuclear proteins and with noncoding centromeric transcripts and is required for efficient RNAi-dependent processing of these transcripts. Our findings reveal an unexpected role for Swi6 in RNAi-mediated gene silencing and suggest that different HP1 proteins ensure full heterochromatic gene silencing through largely nonoverlapping inhibitory mechanisms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SHREC, an Effector Complex for Heterochromatic Transcriptional Silencing

Transcriptional gene silencing (TGS) is the mechanism generally thought by which heterochromatin effects silencing. However, recent discovery in fission yeast of a cis-acting posttranscriptional gene-silencing (cis-PTGS) pathway operated by the RNAi machinery at heterochromatin challenges the role of TGS in heterochromatic silencing. Here, we describe a multienzyme effector complex (termed SHRE...

متن کامل

HP1 is distributed within distinct chromatin domains at Drosophila telomeres.

Telomeric regions in Drosophila are composed of three subdomains. A chromosome cap distinguishes the chromosome end from a DNA double-strand break; an array of retrotransposons, HeT-A, TART, and TAHRE (HTT), maintains telomere length by targeted transposition to chromosome ends; and telomere-associated sequence (TAS), which consists of a mosaic of complex repeated sequences, has been identified...

متن کامل

HP1 Recruitment in the Absence of Argonaute Proteins in Drosophila

Highly repetitive and transposable element rich regions of the genome must be stabilized by the presence of heterochromatin. A direct role for RNA interference in the establishment of heterochromatin has been demonstrated in fission yeast. In metazoans, which possess multiple RNA-silencing pathways that are both functionally distinct and spatially restricted, whether RNA silencing contributes d...

متن کامل

KAP-1 corepressor protein interacts and colocalizes with heterochromatic and euchromatic HP1 proteins: a potential role for Krüppel-associated box-zinc finger proteins in heterochromatin-mediated gene silencing.

Krüppel-associated box (KRAB) domains are present in approximately one-third of all human zinc finger proteins (ZFPs) and are potent transcriptional repression modules. We have previously cloned a corepressor for the KRAB domain, KAP-1, which is required for KRAB-mediated repression in vivo. To characterize the repression mechanism utilized by KAP-1, we have analyzed the ability of KAP-1 to int...

متن کامل

SHREC Silences Heterochromatin via Distinct Remodeling and Deacetylation Modules.

Nucleosome remodeling and deacetylation (NuRD) complexes are co-transcriptional regulators implicated in differentiation, development, and diseases. Methyl-CpG binding domain (MBD) proteins play an essential role in recruitment of NuRD complexes to their target sites in chromatin. The related SHREC complex in fission yeast drives transcriptional gene silencing in heterochromatin through coopera...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular cell

دوره 32 6  شماره 

صفحات  -

تاریخ انتشار 2008